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Introduction

Suppose that f, g : R→ R are functions admitting n derivatives:
Faà di Bruno’s formula enumerates the terms in the expansion of the n-th
derivative

dn

dxn
f(g(x)) = (f ◦ g)(n)(x) .

(On left hand side we used Leibniz notation for derivatives, on right hand
side we used Lagrange’s notation — we will mostly use the latter).
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Introduction

To compute these derivatives we use two precedent results in calculus.
• One is the chain rule for derivation of a composition of functions

d

dx
f(g(x)) = f ′(g(x)) g′(x) .

As we see this produces a “monomial” that is the product of two
functions.

• The other one is the rule for products for deriving the product of
functions, that we present for the case of three functions
a, b, c : R→ R:
d

dx

(
a(x)b(x)c(x)

)
= a′(x)b(x)c(x) + a(x)b′(x)c(x) + a(x)b(x)c′(x) .

We see that this formula produces a sum of “monomials”, in each we
derive one of the terms of the given product.

(Both formulas appear in works by Leibniz, circa 1680).
To compute the n-th derivative we will apply the above rules many many times.
We can predict that the resulting expression will be long and complex, since the
first rule increases the number of terms in a monomial, and the second increases
the number of monomials
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Introduction

Cases n = 1, 2, 3

We may start with a simple direct calculation. We compute the derivatives
for n = 1, 2, 3. The first derivative is obtained by the chain rule.

(f ◦ g)′(x) = f ′(g(x))g′(x) .

The second derivative is obtained by performing product differentiation
and then chain rule.

(f ◦ g)′′(x) =
(
f ′(g(x))g′(x)

)′
=

product=
(
f ′(g(x))

)′
g′(x) + f ′(g(x))g′′(x) =

chain= f ′′(g(x))g′(x)2 + f ′(g(x))g′′(x) .
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Introduction

Let’s see in detail the computation of third derivative. We derive once more the
second derivative

(f ◦ g)′′(x) = f ′′(g(x))g′(x)2 + f ′(g(x))g′′(x) .

(f ◦ g)′′′(x) =
(

f ′′(g(x))g′(x)2
)′

+

��

product+
+collect
		

productww

(
f ′(g(x))g′′(x)

)′
=

product
��

product

&&(
f ′′(g(x))

)′
g′(x)2+

chain

��

2f ′′(g(x))g′(x)g′′(x)+

copy

��

(
f ′(g(x))

)′
g′′(x)+

chain

��

f ′(g(x))g′′′(x) =

copy

��
f ′′′(g(x))g′(x) g′(x)2+

copy

��

2f ′′(g(x))g′(x)g′′(x)+

collect
��

f ′′(g(x))g′(x)g′′(x)+

collectuu

f ′(g(x))g′′′(x) =

copy
vv

f ′′′(g(x))g′(x) g′(x)2+ 3f ′′(g(x))g′(x)g′′(x)+ f ′(g(x))g′′′(x)
Note that we have a tree of derivations.
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Introduction

Summarizing the derivatives n = 1, 2, 3, 4 are:

(f ◦ g)′(x) = f ′(g(x))g′(x)
(f ◦ g)′′(x) = f ′′(g(x))g′(x)2 + f ′(g(x))g′′(x)
(f ◦ g)′′′(x) = f ′′′(g(x))g′(x)3 + 3f ′′(g(x))g′(x)g′′(x) +

+ f ′(g(x))g′′′(x)
(f ◦ g)′′′′(x) = f ′′′′(g(x))g′(x)4 + 6f ′′′(g(x))g′′(x)g′(x)2

+ 3f ′′(g(x))g′′(x)2 + 4f ′′(g(x))g′′′(x)g′(x)
+ f ′(g(x))g′′′′(x).

We see that the expansion of dn

dxn f(g(x)) is always the sum of many
monomials of the form af (m)(g(x))g′(x)i1 . . . g(n)(x)in with appropriate
integer coefficients a, n,m, i1, . . . in.
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Introduction

Faà di Bruno’s formula is a closed form formula to enumerate all such
monomials.
The formula comes in many different formats.

• A combinatorial form. This is the simplest to understand, but is also
the more redundant one, since the monomials are simply repeated
(that is, the coefficients are 1).

• Factorial forms, that collect together monomials in the combinatorial
form.
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Combinatorial form

Factorial

Positive integer numbers are 1, 2, 3, 4, 5, . . ..
Given n positive integer, the product of the first n numbers is called
factorial and is denoted by n! = 1 · 2 · 3 · · ·n.
n! is the number of different ways of lining up n different objects.
(Conventionally when n = 0 then n! = 1).
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Combinatorial form

Cardinality

Given a set A, then |A| is the number of elements in A. (In mathematical
parlance |A| is the cardinality of A)
Example. If A = {1, 44, 4, 133} then |A| = 4. If n is a positive integer
number and A = {1, 2, . . . , n} is the set of the first n numbers then
|A| = n.
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Combinatorial form

Partitions

Consider the set A = {1, 2, . . . , n} of the first n numbers. A partition of
this set is a family of non empty subsets, each one containing one element
of A, so that no element is left behind.
Example. Given A = {1, 2, 3, 4} then {{2}, {4}, {3, 1}} is a partition.
We will call Pn the set of all partitions of {1, 2, . . . , n}. It is a set of sets
of sets of numbers!
Example. There are 5 partitions of {1, 2, 3}, namely

P3 =
{
{{1, 2, 3}}, {{1, 2}, {3}}, {{1}, {2, 3}},
{{1, 3}, {2}}, {{1}, {2}, {3}},

}
Note that |P3| = 5.
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Combinatorial form

Combinatorial form

The Faà di Bruno’s formula has a “combinatorial” form:

(f ◦ g)(n)(x) =
∑
π∈Pn

f (|π|)(g(x))
∏
B∈π

g(|B|)(x) (1)

where
•
∑
π∈Pn

means we sum what follows varying π between all partitions
Pn of {1, ..., n},

•
∏
B∈π means we multiply what follows varying B between all the

parts of the partition π ; and moreover
• |π| is the number of parts in the partition Pn and |B| is the size of
the part B.

Mennucci (SNS) Faà di Bruno 2017 11 / 47



Combinatorial form

Combinatorial form

The Faà di Bruno’s formula has a “combinatorial” form:

(f ◦ g)(n)(x) =
∑
π∈Pn

f (|π|)(g(x))
∏
B∈π

g(|B|)(x) (1)

where
•
∑
π∈Pn

means we sum what follows varying π between all partitions
Pn of {1, ..., n},

•
∏
B∈π means we multiply what follows varying B between all the

parts of the partition π ; and moreover
• |π| is the number of parts in the partition Pn and |B| is the size of
the part B.

Mennucci (SNS) Faà di Bruno 2017 11 / 47



Combinatorial form

Combinatorial form

The Faà di Bruno’s formula has a “combinatorial” form:

(f ◦ g)(n)(x) =
∑
π∈Pn

f (|π|)(g(x))
∏
B∈π

g(|B|)(x) (1)

where
•
∑
π∈Pn

means we sum what follows varying π between all partitions
Pn of {1, ..., n},

•
∏
B∈π means we multiply what follows varying B between all the

parts of the partition π ; and moreover
• |π| is the number of parts in the partition Pn and |B| is the size of
the part B.

Mennucci (SNS) Faà di Bruno 2017 11 / 47



Combinatorial form

Combinatorial form

The Faà di Bruno’s formula has a “combinatorial” form:

(f ◦ g)(n)(x) =
∑
π∈Pn

f (|π|)(g(x))
∏
B∈π

g(|B|)(x) (1)

where
•
∑
π∈Pn

means we sum what follows varying π between all partitions
Pn of {1, ..., n},

•
∏
B∈π means we multiply what follows varying B between all the

parts of the partition π ; and moreover
• |π| is the number of parts in the partition Pn and |B| is the size of
the part B.

Mennucci (SNS) Faà di Bruno 2017 11 / 47



Introduction

Combinatorial form
2.1 Example explaining the combinatorial form
2.2 Proof of the combinatorial form

Factorial forms
3.1 First factorial form
3.2 Second factorial form

Endnotes



Combinatorial form Example explaining the combinatorial form

We now present an example to help understand why any possible way of
deriving f(g(x)) for n times is associated to a partition.
First we note that any partition may be uniquely represented by ordering
the numbers in each part, and the parts by the minimum element. E.g.
(n = 8)

{{5, 7}, {2}, {6}, {3, 1, 8, 4}} → {{1, 3, 4, 8}, {2}, {5, 7}, {6}}
{{8}, {3}, {7, 1}, {4}, {2, 5}, {6}} → {{1, 7}, {2, 5}, {3}, {4}, {6}, {8}}

We now derive f(g(x)) for 8 times, following the scheme
{{1, 3, 4, 8}, {2}, {5, 7}, {6}} down the tree of derivations.
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Combinatorial form Example explaining the combinatorial form

• The first step is obliged:

f(g(x)) → g′(x)f ′(g(x))

and associate it to

{{1, . . .
. . .
. . .
. . ..
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Combinatorial form Example explaining the combinatorial form

• We have now two terms, we decide to derive the second:

g′(x)f ′(g(x)) → g′(x)g′(x)f ′′(g(x))

and we associate it to

{{1, . . .
{2, . . .
. . .
. . .
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Combinatorial form Example explaining the combinatorial form

• We have now three terms, we decide to derive the first:

g′(x)g′(x)f ′′(g(x)) → g′′(x)g′(x)f ′′(g(x))

and we associate it to

{{1, 3, . . .
{2, . . .
. . .
. . .
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Combinatorial form Example explaining the combinatorial form

• We have again three terms, we decide to derive the first again:

g′′(x)g′(x)f ′′(g(x)) → g′′′(x)g′(x)f ′′(g(x))

and we associate it to

{{1, 3, 4, . . .
{2, . . .
. . .
. . .
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Combinatorial form Example explaining the combinatorial form

• We have still three terms, we decide to derive the third:

g′′′(x)g′(x)f ′′(g(x)) → g′′′(x)g′(x)g′(x)f ′′′(g(x))

and we associate it to

{{1, 3, 4, . . .
{2, . . .
{5, . . .
. . .
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Combinatorial form Example explaining the combinatorial form

• We have now four terms, we decide to derive the fourth:

g′′′(x)g′(x)g′(x)f ′′′(g(x)) → g′′′(x)g′(x)g′(x)g′(x)f (4)(g(x))

and we associate it to

{{1, 3, 4, . . .
{2, . . .
{5, . . .
{6, . . .
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Combinatorial form Example explaining the combinatorial form

• We have now five terms, we decide to derive the third:

g′′′(x)g′(x)g′(x)g′(x)f (4)(g(x)) → g′′′(x)g′(x)g′′(x)g′(x)f (4)(g(x))

and we associate it to

{{1, 3, 4, . . .
{2, . . .
{5, 7, . . .
{6, . . .
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Combinatorial form Example explaining the combinatorial form

• We have five terms, we decide to derive the first:

g′′′(x)g′(x)g′′(x)g′(x)f (4)(g(x)) → g(4)(x)g′(x)g′′(x)g′(x)f (4)(g(x))

and we associate it to

{{1, 3, 4, 8 . . .
{2, . . .
{5, 7, . . .
{6, . . .
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Combinatorial form Example explaining the combinatorial form

We have obtained the monomial

g(4)(x)g′(x)g′′(x)g′(x)f (4)(g(x))

that is associated to the partition

{{1, 3, 4, 8},
{2},
{5, 7},
{6}}

Mennucci (SNS) Faà di Bruno 2017 21 / 47



Combinatorial form Example explaining the combinatorial form

Redundancy

We also see that this form is highly redundant. E.g. when n = 4 the
monomial g′′(x)g′′(x)f ′′(g(x)) = g′′(x)2f ′′(g(x)) appears 3 times,
associated to the partitions
{{1, 2}, {3, 4}}
{{1, 3}, {2, 4}}
{{1, 4}, {2, 3}}

Similarly the monomial
g(4)(x)g′(x)g′′(x)g′(x)f (4)(g(x)) = f (4)(g(x))g′(x)2g′′(x)g(4)(x)
that we derived in the example before can be obtained by 420 different
partitions in P8. (We will prove this fact later on).

We will see in next section that factorial forms reduce the redundancy (at
the price of a longer formula....).
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Combinatorial form Proof of the combinatorial form

We now prove formally that the combinatorial form formula holds true,
using induction. The case n = 1 is true, since P1 contains only one
partition, namely π = {{1}}, that is associated to
d
dxf(g(x)) = f ′(g(x))g′(x).
We now assume that

(f ◦ g)(n)(x) =
∑
π∈Pn

f (|π|)(g(x))
∏
B∈π

g(|B|)(x)

is true, and we derive it once more.
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Combinatorial form Proof of the combinatorial form

This produces two terms

(f ◦ g)(n+1)(x) =
∑
π∈Pn

f (|π|+1)(g(x))g′(x)
∏
B∈π

g(|B|)(x) +

+
∑
π∈Pn

f (|π|)(g(x))
∑
B̂∈π

∏
B∈π

g(|B|+δB,B̂)(x)

where δB,B̂ is the Kronecker delta 1

δA,B =
{

1, if A = B
0, if A 6= B

1http://en.wikipedia.org/wiki/Kronecker_delta
Mennucci (SNS) Faà di Bruno 2017 24 / 47
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Combinatorial form Proof of the combinatorial form

The question now is: how do we generate the partitions in π̃ ∈ Pn+1
starting from the partitions in π ∈ Pn.

1 First way is to decide that singleton {n+ 1} is a part in π̃, so that
π̃ = π ∪ {{n+ 1}}.
Example, we start from
π = {{1, 4}, {2, 3}} ∈ P4 and we build
π̃ = {{1, 4}, {2, 3}, {5}} ∈ P5.

2 Second way is to decide that n+ 1 is an element of a part B̃ in π̃,
and relate B̃ to a part B̂ in π, by B̃ = B̂ ∪ {n+ 1}.
Example, we start from
π = {{1, 4}, {2, 3}} ∈ P4 and we build
π̃ = {{1, 4, 5}, {2, 3}} ∈ P5 when B̂ = {1, 4}, B̃ = {1, 4, 5}
π̃ = {{1, 4}, {2, 3, 5}} ∈ P5 when B̂ = {2, 3}, B̃ = {2, 3, 5}

The above method uniquely generates each π̃ ∈ Pn+1 starting from a
π ∈ Pn and, in the second case, choosing B̂ ∈ π.
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Combinatorial form Proof of the combinatorial form

The first part of (f ◦ g)(n+1)(x) is associated to the first generative
method by ∑

π∈Pn

f (|π|+1)(g(x))g′(x)
∏
B∈π

g(|B|)(x) =

=
∑

π̃∈Pn+1,{n+1}∈π̃
f (|π̃|)(g(x))

∏
B̃∈π̃

g(|B̃|)(x) (2)

indeed all such π̃ satisfy {n+ 1} ∈ π̃ and |π̃| = |π|+ 1, and moreover the
case B̃ = {n+ 1} generates the extra term g′(x) that is in the left hand
side.
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Combinatorial form Proof of the combinatorial form

The second part of (f ◦ g)(n+1)(x) is associated to the second generative
method by ∑

π∈Pn

f (|π|)(g(x))
∑
B̂∈π

∏
B∈π

g(|B|+δB,B̂)(x) =

=
∑

π̃∈Pn+1,{n+1}6∈π̃
f (|π̃|)(g(x))

∏
B̃∈π̃

g(|B̃|)(x) (3)

indeed
• all such π̃ satisfy {n+ 1} 6∈ π̃ and |π̃| = |π|, and moreover
• there are as many π̃ associated to π as there are B̂ ∈ π and ,
• when B̂ = B, we have δB,B̂ = 1 and |B̃| = |B|+ 1, whereas

• when B̂ 6= B, we have δB,B̂ = 0 and |B̃| = |B|.
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Combinatorial form Proof of the combinatorial form

Summing up the identities (2) and (3) we conclude that indeed

(f ◦ g)(n+1)(x) =
∑

π̃∈Pn+1,{n+1}∈π̃
f (|π̃|)(g(x))

∏
B̃∈π̃

g(|B̃|)(x) +

+
∑

π̃∈Pn+1,{n+1}6∈π̃
f (|π̃|)(g(x))

∏
B̃∈π̃

g(|B̃|)(x) =

=
∑

π̃∈Pn+1

f (|π̃|)(g(x))
∏
B̃∈π̃

g(|B̃|)(x)

that is the formula for n+ 1.
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Factorial forms

The factorial forms collect together monomials in the combinatorial form;
the formula is more complex, but it is also more useful.
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Factorial forms First factorial form

Factorial form

The monomials in the combinatorial form (1) may be collected, to give

dn

dxn
f(g(x)) =

∑ n!
m1! 1!m1 m2! 2!m2 · · · mn!n!mn

·

·f (m1+···+mn)(g(x))
n∏
j=1

(
g(j)(x)

)mj (4)

where the sum is over all n-tuples of nonnegative integers (m1, . . . ,mn)
satisfying the constraint

1 ·m1 + 2 ·m2 + 3 ·m3 + · · ·+ n ·mn = n.
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Factorial forms First factorial form

The monomials

f (m1+···+mn)(g(x)) ·
n∏
j=1

(
g(j)(x)

)mj

that appear in the formula (4) may be written as

f (m1+···+mn)(g(x))
(
g′(x)

)m1 (g′′(x)
)m2 · · ·

(
g(n)(x)

)mn

(5)

We clearly see that every derivative of g appears once, with varying
exponential; then monomials are not repeated in this formula.
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Factorial forms First factorial form

Hence the term
n!

m1! 1!m1 m2! 2!m2 · · · mn!n!mn

is the integer coefficient of the monomial.
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Factorial forms First factorial form

Sometimes, to give it a memorable pattern, the formula (4) is written in
this way :

dn

dxn
f(g(x)) =

∑ n!
m1!m2! · · · mn! ·f

(m1+···+mn)(g(x))·
n∏
j=1

(
g(j)(x)
j!

)mj

.

This was original formula presented by Francesco Faà di Bruno in 1855 in
Annali di Scienze Matematiche e Fisiche.
How can we reconnect this formula (4) with the previous combinatorial
version (1)?
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Factorial forms First factorial form

Partition signature

Consider a partition π ∈ Pn. We define the integer mj as number of parts
in A ∈ π such that |A| = j. We will say that the numbers m1,m2, . . .mn

are the signature of the partition π.

Obviously for each partition, we have |π| = (m1 + · · ·+mn);
moreover 1 ·m1 + 2 ·m2 + 3 ·m3 + · · ·+ n ·mn = n since π is a partition
of {1, . . . , n}.
A partition with the signature m1,m2, . . .mn generates the monomial

f (m1+···+mn)(g(x)) ·
n∏
j=1

(
g(j)(x)

)mj =

= f (m1+···+mn)(g(x))
(
g′(x)

)m1 (g′′(x)
)m2 · · ·

(
g(n)(x)

)mn

.

seen in (5).
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Factorial forms First factorial form

Example signature

We once again follow up on the first example.
In the first example we computed one term of the 8-th derivative of
f(g(x)) according to the partition π = {{1, 3, 4, 8}, {2}, {5, 7}, {6}},
and we obtained the monomial

f (4)(g(x))g′(x)2
g′′(x)g(4)(x) .

in this π we have
m1 = 2 singletons, namely {2}, {6}
m2 = 1 pair, namely {5, 7}
m3 = 0 triples,
m4 = 1 quadruples, namely {1, 3, 4, 8},
and then m5 = . . . = m8 = 0.
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Factorial forms First factorial form

Building a partition
Let us now fix a signature.
How can we build any partition with this same signature?
We use the signature from the example m1 = 2, m2 = 1, m3 = 0,
m4 = 1, m5 = . . . = m8 = 0 to show the mechanics.
We prepare the skeleton

{ { }, { }, { , }, { , , , } }

Then we order the first n = 8 numbers and we insert this ordering in the
skeleton.

6, 2 5 7 8 4 1 3
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

{ {6}, {2}, {5, 7}, {8, 4, 1, 3} }

This operation may be done in n! = 8! different ways.
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Factorial forms First factorial form

This partition is not uniquely built.
We can indeed interchange partitions with the same number of elements.

{ {6}, {2}, {5, 7}, {8, 4, 1, 3} }

{ {2}, {6}, {5, 7}, {8, 4, 1, 3} }

This can be done in m1!m2! . . .mn! different ways.
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We can moreover interchange numbers in the same partition.

{ {6}, {2}, {5, 7}, {8, 4, 1, 3} }

{ {6}, {2}, {5, 7}, {3, 4, 1, 8} }

This can be done in
1!m1 2!m2 · · · n!mn

different ways. (Indeed for example in a triple the numbers can be
reordered in 3! = 6 different ways; if there are m3 triples then there is a
total of (3!)m3 reorderings inside the triples).
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Proof

This line of reasoning in the example proves that the Faà di Bruno’s
formula (4) follows from the combinatorial form (1).
We saw that, given a signature m1,m2, . . .mm, we can fill the skeleton in
n! ways, but we obtain the same partition multiple times,hence we divide
n! by

m1!m2! . . .mn! · 1!m1 2!m2 · · · n!mn .

We so proved that there are exactly

n!
m1! 1!m1 m2! 2!m2 · · · mn!n!mn

partitions π ∈ Pn with signature

m1,m2, . . .mm .

Mennucci (SNS) Faà di Bruno 2017 39 / 47



Factorial forms First factorial form

All partitions with the same signature generate the same monomial

f (m1+···+mn)(g(x))
(
g′(x)

)m1 (g′′(x)
)m2 · · ·

(
g(n)(x)

)mn

.

Eventually if we callect together all the monomials in the combinatorial
forms, the integer coefficient of the above monomial will be exactly

n!
m1! 1!m1 m2! 2!m2 · · · mn!n!mn
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Coefficient in the example

The signature in the example is m1 = 2, m2 = 1, m3 = 0, m4 = 1,
m5 = . . . = m8 = 0.
So there are

n!
m1! 1!m1 m2! 2!m2 · · ·mn!n!mn

= 8!
2! 1!2 1! 2!1 0! 3!0 1! 4!1 = 420

different partitions in P8 that generate the monomial
f (4)(g(x))g′(x)2g′′(x)g(4)(x).
This means that the coefficient of the monomial is 420.
We now appreciate the Faà di Bruno’s formula, that provides the
coefficient in monomials in a “computable form”.
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Second factorial form

The monomials in the combinatorial form may be partially collected, to
give

dn

dxn
f(g(x)) =

n∑
m=1

f (m)(g(x))
m!

∑(
n

j1, j2, . . . , jm

)
m∏
i=1

g(ji)(x)

where the second sum is over all m-tuples of positive integers (j1, . . . , jm)
satisfying the constraint

j1 + · · ·+ jm = n.
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Proof

This formula is obtained from the combinatorial formula by two collecting
operations.
First we collect together all partitions π with |π| = m; then we fix a vector
of positive integer numbers j1, . . . jm satisfying j1 + · · ·+ jm = n; we
write π = {B1, . . . Bm} we count how many partitions there are with
|B1| = j1 . . . |Bm| = jm.
This is a well known combinatorial problem 2 solved by the multinomial
coefficient (

n

j1, j2, . . . , jm

)
= n!
j1! j2! · · · jm! .

We eventually divide it by m! to disregard the ordering of the parts.

2http://en.wikipedia.org/wiki/Multinomial_coefficient
Mennucci (SNS) Faà di Bruno 2017 43 / 47
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Coefficient in the example

The monomial in the example was
f (4)(g(x))g′(x)g′(x)g′′(x)g(4)(x). This is
obtained by setting n = 8,m = 4 and
considering all the quadruples j1, j2, j3, j4
where the numbers 1, 1, 2, 4 appear (note that
j1 + j2 + j3 + j4 = n = 8). There are 12
such quadruples, as seen on the right; hence
the monomial is generated 12 times in the
formula. There follows that the coefficient of the
monomial is

12 1
m!

(
n

j1, j2, . . . , jm

)
= 12 1

4!
8!

1! 1! 2! 4! = 420 .

j1 j2 j3 j4
1 1 2 4
1 2 1 4
2 1 1 4
1 2 4 1
2 1 4 1
2 4 1 1
1 1 4 2
1 4 1 2
4 1 1 2
1 4 2 1
4 1 2 1
4 2 1 1
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Endnotes

These notes are available in English and in Italian, both in the slide format
(that you are reading) and in the article format .
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